Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 119(26): 8227-38, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26061614

RESUMO

Hypoxia--a hallmark of solid tumors--makes hypoxic cells radioresistant. On the other hand, DNA, the main target of anticancer therapy, is not sensitive to the near UV photons and hydrated electrons, one of the major products of water radiolysis under hypoxic conditions. A possible way to overcome these obstacles to the efficient radio- and photodynamic therapy of cancer is to sensitize the cellular DNA to electrons and/or ultraviolet radiation. While incorporated into genomic DNA, modified nucleosides, 5-bromo-2'-deoxyuridine in particular, sensitize cells to both near-ultraviolet photons and γ rays. It is believed that, in both sensitization modes, the reactive nucleobase radical is formed as a primary product which swiftly stabilizes, leading to serious DNA damage, like strand breaks or cross-links. However, despite the apparent similarity, such radio- and photosensitization of DNA seems to be ruled by fundamentally different mechanisms. In this review, we demonstrate that the most important factors deciding on radiodamage to the labeled DNA are (i) the electron affinity (EA) of modified nucleoside (mNZ), (ii) the local surroundings of the label that significantly influences the EA of mNZ, and (iii) the strength of the chemical bond holding together the substituent and a nucleobase. On the other hand, we show that the UV damage to sensitized DNA is governed by long-range photoinduced electron transfer, the efficiency of which is controlled by local DNA sequences. A critical review of the literature mechanisms concerning both types of damage to the labeled biopolymer is presented. Ultimately, the perspectives of studies on DNA sensitization in the context of cancer therapy are discussed.


Assuntos
Dano ao DNA/efeitos da radiação , DNA/química , Nucleosídeos/química , Raios Ultravioleta , Bromodesoxiuridina , Quebras de DNA/efeitos da radiação , Elétrons , Radicais Livres/química , Raios gama , Humanos , Radiação Ionizante
2.
Phys Chem Chem Phys ; 17(26): 16907-16, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26059609

RESUMO

In this work, we have synthesized 5-thiocyanato-2'-deoxyuridine (SCNdU) along with the C6-deuterated nucleobase 5-thiocyanatouracil (6-D-SCNU) and studied their reactions with radiation-produced electrons. ESR spectra in γ-irradiated nitrogen-saturated frozen homogeneous solutions (7.5 M LiCl in H2O or D2O) of these compounds show that electron-induced S-CN bond cleavage occurs to form a thiyl radical (dU-5-S˙ or 6-D-U-5-S˙) and CN(-)via the initial π-anion radical (SCNdU˙(-)) intermediate in which the excess electron is on the uracil base. HPLC and LC-MS/MS studies of γ-irradiated N2-saturated aqueous solutions of SCNdU in the presence of sodium formate as a OH-radical scavenger at ambient temperature show the formation of the dU-5S-5S-dU dimer in preference to dU by about 10 to 1 ratio. This shows that both possible routes of electron-induced bond cleavage (dUC5-SCN and S-CN) in SCNdU˙(-) and dU-5-S˙ formation are preferred for the production of the σ-type uracilyl radical (dU˙) by 10 fold. DFT/M06-2x/6-31++G(d,p) calculations employing the polarizable continuum model (PCM) for aqueous solutions show that dU-5-S˙ and CN(-) formation was thermodynamically favored by over 15 kcal mol(-1) (ΔG) compared to dU˙ and SCN(-) production. The activation barriers for C5-S and S-CN bond cleavage in SCNdU˙(-) amount to 8.7 and 4.0 kcal mol(-1), respectively, favoring dU-5-S˙ and CN(-) formation. These results support the experimental observation of S-CN bond cleavage by electron addition to SCNdU that results in the formation of dU-5-S˙ and the subsequent dU-5S-5S-dU dimer. This establishes SCNdU as a potential radiosensitizer that could cause intra- and inter-strand crosslinking as well as DNA-protein crosslinking via S-S dimer formation.


Assuntos
Desoxiuridina/análogos & derivados , Elétrons , Uracila/síntese química , Desoxiuridina/síntese química , Desoxiuridina/química , Dimerização , Radicais Livres/síntese química , Radicais Livres/química , Estrutura Molecular , Teoria Quântica , Uracila/análogos & derivados , Uracila/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...